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This paper is concerned with problems of the stability of the beds of 
rivers and canals. A new method of estimating stability based on dy- 
namic rather than static conditions is proposed; the derivation of this 
method involves the successive application of the basic concepts of 
Lyapunov's general theory of stability of motion. 

The flow of a liquid in a deformable channel in the presence of 
scour processes and subsequent filling-up is represented as a wave 
motion due to the action of perturbations on the "flow-deformable 
solid boundary" system. 

In accordance with the general theory of stability of motion "in 
the srnall ~ and the basic ideas of the hydrodynamic theory of stability 
[1-3], these perturbations are assumed to be small (in amplitude) 
sinnsoidal waves. Ifthe perturbation hasthe form of peaks andvalleys 
vanishing at x = ~ o  [t can likewise be expressed in terms of elemen- 
tary sinusoidal perturbations by means of the Fourier integral [3]. 

The object of the analysis is to establish the conditions under 
which the nonsteady regime (perturbed motion) degenerates into the 
initial uniform state (unperturbed motion), i . e . ,  erosion of the bed 
and the transport of sediment in the form of waves or dunes once 
begun decreases exponentially with time. 

The representation of the initial phase of deformation of the bed 
in the form of traveling bottom sand waves is in quite good agreement 
with the experimental facts [4]. Moreover, it has also been experi- 
mentally established that up to certain, relatively large flow velocities 
the mass motion of sediment along the bottom is wavelike in form. 

1, In accordance with the model adopted, the perturbed motion 
is described by the system of equations of hydraulics (one-dimensional 
hydrodynamics) of nonstationary motion of a suspensive flow in an 
credible channel. This consists of the following three equations: 
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Here, Q, V, w, H, and B are, respectively, the discharge, velocity, 
emss section, depth and width of the flow in the nonstationary regime; 
Qs' is the suspended sediment discharge, Qs" is the bed load discharge; 
Z is the height of the bottom of the bed above the horizontal reference 
plane; a is the total momentum correction, which takes into account 
both the nonuniformity of the averaged velocity distribution and the 
velocity fluctuation over the flow cross section; S0 and S~ are the mean 
volume concentration over the cross section and the concentration at 
the bottom; p. is the density of the sediment; p is the density of the 
water; r is the angle at which the bottom is inclined to the horizontal 
in the stable state; J* is the hydraulic gradient of the suspensive flow; 
qs is the rate of change of discharge, which is governed by the phase 
influx or efflux along the course. 

We will consider the case in which there are no changes in the 
discharge of the water component, so that qs expresses the variation 
of the solid phase or suspended sediment discharge. 

The first equation in (1.1) is the continuity equation. The second 
describes the deformation of the bed, i . e . ,  the l~ansport of the 
second phase--the material scoured from the bed. 

In this form [5] the left-hand side of the equation reflects the 
variation of the total sediment discharge along the motion, and the 

right-hand side reflects the scouring or filling-up of the bottom, i . e . ,  
the deformation of the bed. 

Equation (t.2) is the one-dimensional equation of hydrodynamics 
(equation of hydraulics) for the nonstationary motion of a turbulent 
suspensive flow in a deformable chaunel with variable phase discharge 
along the course. By analogy with [6] (in which an equation identical 
with (1.2) was derived for the case of flow in a nondeformable rigid 
channel), it is obtained from the general equations of hydrodynamics 
for a two-phase turbulent flow in the Kolrnogorov form as proposed 
by Barenblatt [7]: 
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Equation (1.2) is derived from these as follows: first, the dynamic 
equation, w~itten in projection onto the normal with respect to the 
longitudinal component, is integrated over the depth of the flow. The 
resulting law of distribution of hydrodynamic pressure over the depth 
of the flow is substituted into Eq. (1.3) written in projection onto the 
longitudinal axis and then this equation is integrated over the flow 
cross section. In this case we will confine ourselves to the Boussinesq 
approximation, discarding as small those terms that contain products 
of the derivatives and their powers higher than the first. Finally, a 
power-law approximation is used for the distribution of suspension con- 
centration over the depth. Without presenting proofs, we note that 
such a relation for the concentration distribution reflects the actual 
picture at a value of the exponent m << 1. Thus, we arrive at the 
equation of hydraulics of sediment-carrying flow in the form (1.2). 
It immediately goes over into the Boussinesq--Saint-Venant equation 
if S0 = Si = O. 

2. Equations (I.i) and (1.2) include terms containing the suspended 

and bottom sediment discharges together with the mean and bottom 

concen~ations. Therefore, to close the system, additional relations 

are required for the above-mentioned characteristics. 
In particular, it is possible to use Levi's relation for the discharge 

[5]. Assuming that Q >> Qs', the mean concentration over the flow 
cross section can be represented in the form*: 

So = Qs'/Q = 0.006 (v/u,0)~ (d/R) L~ . (%1) 

Here, w0 and d are the hydraulic size and diameter of the grains of 
bed material, R is the hydraulic radius of the channel. 

Since $1 plays an impdrtant part in the analysis of the perturbed 
state of the flow, i . e . ,  the nonstationarity effect, it is not possible to 
make direct use of existing expressions for S, derived for stationary 
transfer processes in the bottom layer. 

However, if we cousider that in the presence of bottom perturba- 
tions nonstationary pick-up processes may occur if the momentum of 
the flow in the bottom region, determined from the maximum value 
of the vertical component of the fluctuation velocity, is greater than 
the momentum of the grains of the sediments that form the bed, which 
may be suspended as a result of the action of the perturbations, i . e . ,  
greater than the momentum determined from the sinking velocity and 

* Instead of (2.1) it would also be possible to take any other relation 
among those usually employed [8]. They have almost no effect on the 
end results, as is apparent from the final form of the stahility criterion. 
This is attributable to the fact that at the beginning of the scour pro- 
cesses the mean concentration over the cross section S o << S 1 and in 
Eq. (1.2) oS 0 << I. 
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the forces of cohesion, then we can write the following approximate 

formula of phenomenologinal origin: 

W m  ~' - -  (wo ~ + Tp-~) 
$1 = Co Wm..  , (2.2) 

where W m is the maximum value of the vertical component of the 
fluctuation velocity,  T is the cohesive stress, which in the case of 
silty and clayey particles is introduced to allow for the additional 
forces that develop in an aqueous medium as a result of intensifica- 
tion of the interaction between the above-mentioned particles, and 

e0 is a coefficient that reflects the action on the suspended grains of 
the field of averaged characteristics of the unperturbed state of the 
turbulent flow and can be approximately determined from the follow- 

ing considerations. 

7 

// 

Fig. 1 

For a stationary transfer process in the bottom layer Eq. (2.2) can 

be written in the form: 

3"2 = Co "Win*~ (w~ + TP-~) (2.3) 

where Wr~ is W m referred to the stationary unperturbed state of the 

flow. 
Obviously, the value of S~ according to (2.3) should be equal to 

the existing expressions for 8 r and if (2.3) is equated to one of these, 
for example,  Makkaveev's semiempirical  formula [9], which is in 
good agreement with the experimental data on the bottom concen- 
tration under stationary transfer conditions in the bottom layer [10], 

then for the coefficient e 0 we obtain 

Wm*~ V1 ~ 
Co ~ 0.36 Wm,~. __ (U:o ~ + Tp-1) ~g,Ho 

Here, V. is the so-called dynamic velocity,  and C is Chezy's co- 
efficient. Since the bottom velocity Vi can be expressed in terms of 

the mean flow velocity in the form V1 = V0 K, we obtain 

3.2 Vo4K ~ 
Co = ZHo[9g,Vo~._ C~(wo 2 + Tp-1)] - (2.5) 

3. In the case of concentration of the perturbations essentially 

within the bottom region of a granular bed, the variation of the free 

surface owing to the occurrence of perturbations may be neglected; 

this is equivalent to equating the flow depth increment h to the bot- 

tom deformation increment ~, i . e . ,  

h : H - - H o ,  ~ : Z - - Z o ,  h : - - ~ .  (3.1) 

Here, H 0 and Z 0 are the flow depth and the vert ical  position of the 

channel bottom in the stationary uniform flow regime (Fig. 1), and 
H and Z are the same quantities in the presence of perturbation, i . e . ,  

in the nonstationary regime. 
We now linearize Eqs. (1.1) and (t .2),  taking 

V = V o +  v, H = H o + h ,  

c0 = ( o 0 + B 0 h ,  L = L 0 + ~ ,  

and then, substituting into (1.2) the value of 8 t from (2.2) and the 
value of qs from the deformation equation (1.1.2) and eliminating 
the perturbed velocity v by means of the continuity equation (1.1.1), 
using condition (3.1), we obtain a second-order partial differential 
equation with constant coefficients in the deformation coordinate ~: 

P1 = l ,  P~. = (xVo - -  aAx*VoBo/too + A2g.  , 

Ps = aVo 2 - -  Alo~VoO~Bo / o9o - -  o~.4o~*Vo~ - -  A~g.o~ o / Bo + A2g.Vo , 

P4 = 2g , io /Vo ,  Ps = 2g,iolI, (3.2) 
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Here, II is the so-called form factor of the bed, F 0 is the Froude 
number, i 0 is the slope of the bottom, and x* is the hydraulic index of 

the bed. 
The stability of the unperturbed state of the channel bottom is 

analyzed below by representing the solution of Eq. (8.2) in the form 

(k is the wavelength): 

= e ~x+rt (3.4) 

with Re3 -= 0 in order to satisfy the conditions at infinity [1]. 
Then the characteristic equation obtained by introducing values 

of ~ from (3.4) into Eq. (3.2) has the form: 

Plr  2 + (P~ + ikP~)r -}- ( - -  Pak ~ q- ikPs)  = 0 

(k = Im ~ = 2zt/X). (3.5) 

We will  employ the Lyapunov-Hurwitz stability condition used in 
[12] to investigate the stability of a real fluid flow of finite depth in 
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nondeformable channels. According to this condition, the motion is 
asymptotically stable if all the even minors in the left upper corner 
of the square matrix of order 2n composed of coefficients of the poly- 
nomial jc(iZ) representing the characteristic equation with the com- 
plex coefficients of the equation of perturbed motion are greater 
than zero. 

From the square matrix constructed from (3.5) (by reducing it to 
the form if(iZ)) we obtain the following stability conditions: 

PtP~ > O, P~P4P~ - -  PaP42 - -  P1Ps 2 > 0 , 

(PlP~ = 2g.i0 / V0) > 0. (8.6) 

The first of these is always satisfied in accordance with the expression 
in parentheses. 

Introducing into the second condition the value of the constant 
eoefficients according to (3.3), neglecting the terms with cofactors 
A F and A2* as negligibly small, and solving the inequality for the 
flow velocity, we obtain 

Vo* < [ ( ~  C2(wo~ -1) {G--0.36 re, K%)oBo-1 X 

X [t--0.25 x* (t--H-r)]})X 

X (gg* ( G - -  O.36 rer K2rDoBo- ' ))- U ' I  z 

C = kto ( I I  ~ - -  MI -~- co), (3.'7) 

The right-hand side of (3.7)expresses the limiting velocities 
above which the stable state of the channel must be disturbed, i . e . ,  
dune formation begins. 

These velocities are directly related with the diameter of the 
bed ma te r i a l - t he  greater the diameter,  the greater the right-hand 
side of inequality (3.7), i . e . ,  the degree of stability of the bed in-  
creases. Thus, the criterion gives a qualitatively correct picture of 
the actual process of erosion and filling-up of the beds of rivers and 
canals. Quantitatively, it is possible to obtain an estimate by com- 
paring the velocities calculated from (3.7) with the values of the so- 
called nonscouring velocities given in existing standards [13], which 
are the result of generalizing the empirical relations for nonscouring 
velocities, the results of laboratory and field experiments, and 
operational data. Since the velocities given in the standards chiefly 
correspond to rectangular and broad channels, the values of the 
stable velocities calculated from (8.7) are given in the table for the 
same section. 

As may be seen from the table, V0* ~ U, i . e . ,  there is very 
satisfactory agreement between the theory and the generalized ma-  
terial of an experimental nature. This is all the more significant in 
that not one empirical coefficient has been introduced into the cri- 
terion obtained in order to improve the convergence of the results 
and the criterion is composed exclusively of perfectly definite flow 
and channel characteristics. 

The degree of quantitative convergence is graphically illustrated 
in Fig. 2, where V~ is the effective velocity (m/see)  at which the 
grain starts to move and d is the grain diameter (mm);  curves 1 -4  
are based on relation (a.7) with the Chezy coefficient according to 
Makkaveev (1), Tou Kuo-jen (2), Ch'ang (3), and Strickler (4); the 
experimental points are those of: Velikanov--1; Pushkarev--2; 
Shamov-3;  Knomz-4 ;  Rubinshtein-5; He--6; Chang--7; Nanking 
Laboratory--8; field observations of Chinese rivers--9; Meyer-Peter -  
-10 ;  S c o b e y - l l ;  and Shaffemak-12.  The comparative experimen- 
tal points were taken from [14], therefore the conversion from the 
velocities obtained from (a.7) to Vl was based on Tou Kuo-jen's 
relation for the distribution of local averaged velocity along the 
normal to the free surface [15]. 

On the graph we have plotted the experimental points obtained by 
M. A. Velikanov and N. M. Bochkov, V. F. Pushkarev, G. I. 
Shamov, V. S. Knoroz, G. A. Rubinshtein, He Chih- t 'a ,  Chang 
Yu-ling, the Nanking Hydraulic Engineering Laboratory, Meyer-Peter, 
Scobey, and Shaffernak [14]. Four theoretical curves are also shown. 
They were all obtained from (3.7), but using different relations for 
the Chezy coefficient C, namely, the expressions proposed by Strick- 
let, Ch'ang, V.M. Makkaveev [16], and Tou Kuo-jen [15]. 

In constructing the theoretical curves we introduced these ex- 
pressions for C because in them the Chezy coefficients are quantita- 
tively related with the bed grain diameter, which is very important. 
Since these expressions do not give the same value of C, we obtained 
four theoretical curves. However, all these curves conform quite 
well to the experimental points. This again shows that the stability 
criterion also gives quantitatively reliable and correct results. 

L20B Ol ~22 Q6 1 Z 4 
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F ig .  2 

The theoretical curves have a minimum corresponding to the least 

values of the velocities at a grain diameter of approximately 0.2 mm. 

These fractions are the most "dangerous" in relation to displacement. 

The existence of "dangerous" fractions and the corresponding mini- 

mum critical velocities has also been noted by experimeters such as 

Scobey and Fortier, Penk, Schoklitsch, Gilbert, Shaffernak, and 

others [17]. 
To each value of the velocity above the "critical" there corres- 

pond "dangerous" fractions of two different diameters. For example, 

VI = 0.5 m/see, grains belonging to the fraction from 0.01 to 5 mm 

are unstable. Grains smaller than 0.01 and larger than 5 mm will not 
be transported at that velocity. This is because at diameters <0.I- 

0.2 mm the cohesion between the grains and hence their resistance 

to s~zipping and shear increase sharply. This is confirmed by observa- 
tion and experiment [18,19]. 

k should be noted that similar, but exclusively empirical curves 
have been obtained by a number of investigators, for example, 

Bagnold, Sundbom, Zvonkov [lq], and Tou Kuo-jen [14]. 

In conclusion we note that in deriving the theoretical V z = f(d) 

curves, we took values of 2.5 for x* in (3.7). This most closely 
corresponds to the conditions under which the experimental com- 

parison points were obtained. 
The author thanks T. G. Voinich-Syanozhenitskii for taking an 

interest in his work and discussing the results and N. N. Bliadze and 
N. V. Bolotashvili for making the necessary numerical calculations. 
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